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ABSTRACT 

Shape reconstruction for nondestructive evaluation (NDE) of internal defects in ground 

vehicle hulls using eddy current probes provides a rationale for determination of when to 

withdraw vehicles from deployment. This process requires detailed finite element optimization and 

is computationally intensive. Traditional shared memory parallel systems, however, are 

prohibitively expensive and have limited central processing units (CPUs), making speedup limited. 

So parallelization has never been done. However, a CPU that is connected to graphics processing 

units (GPUs) with effective built-in shared memory provides a new opportunity. We implement the 

naturally parallel, genetic algorithm (GA) for synthesizing defect shapes on GPUs. Shapes are 

optimized to match exterior measurements, launching the parallel, executable GA kernel on 

hundreds of CUDA™ (Compute Unified Device Architecture) threads to establish the efficiencies. 

 

MOTIVATION AND BACKGROUND  
When a hull or plate-plate weld in a ground vehicle is 

found to be defective, it is often wastefully taken out of 

service for repairs in present practice without determining if 

the defect warrants withdrawal. A procedure is required for 

defect characterization so that a decision to withdraw may be 

thought-out without compromise to war-fighter-safety; such 

a procedure would include behind-armor damage created by 

Improvised Explosive Device (IED) blasts. X-ray 

technology is not only dangerous, but also impracticable 

because of requiring readings within the tank’s interior of X-

rays that pass through the hull. NDE for corrosion, cracks, 

and other defects in ground vehicle armor employs eddy 

current probes for testing [1]. Recent changes have been 

towards composite materials for ground vehicles and remote 

measurement of defects through sophisticated measuring 

devices. These methods do not deal with corrosion and 

ignore the larger fleets of steel-hulled ground vehicles 

continuing to require the older NDE assessment. These 

conventional vehicles with steel hulls will remain in service 

for extended periods and be increasingly aging so that 

testing for, and characterizing defects are a fortiori 

important 

 

STATE OF THE ART – HOW IT IS DONE TODAY 
Present methodology examines the response of the hull 

under test to a signal from an eddy current problem [1] (Fig. 

1a). Any deviation from a known baseline response of a 
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(a) The Test System 

 

 
(b) Defect Modeled as h={x1,y1,…,y6} 

 

 
(c) Reconstructing h 

 

Figure 1: Eddy Current Defect Testing System 

 
a) Physical Alternating Pole System 

 

 
b) Minimum Boundary Value Problem with Boundary 

Conditions on Magnetic Vector Potential A 

 

Figure 2: Pole-Faces to be Shaped and Problem 
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Figure 3: Parametric Model of Pole Face with Measuring 

Points 
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target with no defects is flagged as defective. Defect 

characterization is not done at present because it involves 

thousands of tedious eddy current computations in complex 

arithmetic and a three-dimensional magnetic vector potential 

with mixed finite elements [2] to model and optimize the 

defect shape h of Fig. 1b until the computed and measured 

fields match (Fig. 1c). 

 

 

 

THE TEST PROBLEM 
Gradients-based optimization is difficult to program 

especially with eddy currents and would require a costly 

shared memory system usually limited to 16 processors 

because of technology limits [3]. Time is also a factor 

because these computations require large computer systems 

not readily portable for field testing. MSU’s HPCC (High 
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Table 1:  Hitting the 4 GB Limit at Matrix Size 10
4
x10

4
  

Size TE SK(in MB) TENSiP SK(in MB) TENSiS SC(MB) 

100 10000 0.038147 661 0.002521 1209 0.004612 

400 16000 0.061035 8819 0.033642 2421 0.009235 

900 810000 3.089905 28829 0.109974 5021 0.019153 

1600 2560000 9.765625 67239 0.256496 10421 0.039753 

2500 6250000 23.841858 130049 0.496098 17301 0.065998 

6000 36000000 137.329101 374459 1.428448 41681 0.159000 

8000 64000000 244.140625 657679 2.508846 54221 0.206836 

10000 100000000 381.469727 1020099 3.891369 68021 0.259479 

Key: 
TE: Total Elements 

TENSiP: Total number of elements that need to be stored in profile storage 

TENSiS: Total number of elements that need to be stored in sparse storage  

SK: Storage capacity 

Figure 4: Timing by Element-by-Element Iterations (with 

GPU is the flat horizontal line 

Performance Computing Center) Cluster provides an 

alternative powerful platform with parallel processing on the 

Graphics Processing Unit (GPU) [4, 5]. 

A primary question occupying our minds was which 

optimization method to use.  

Our experience is that gradient techniques are fast in 

computation but slow to set up because of the programming 

time to have special mesh generators.  Going by the 

literature, Preis et al. [6], staunch advocates of the zeroth 

order evolution strategy, merely say it is competitive with its 

higher order deterministic counterparts (which we take to 

mean the equivalent in time at best), but claim that its 

“robustness and generality” are superior. We agree with this 

observation because search methods will never see local 

minima as a problem. In contrast to what Preis et al. state, 

Simkin and Trowbridge [7] observe that simulated annealing 

and the evolution strategy take many more function 

evaluations. This is also our experience and we would add 

that the genetic algorithm works faster than simulated 

annealing.  Haupt [8] advises that the genetic algorithm is 

best for many discrete parameters and the gradient methods 

for where there are but a few continuous parameters. 

However, we have gone up to 30 continuous parameters 

without problems. There seemed good reasons to go either 

way. But when the need for special mesh generators for high 

order methods is considered, a zeroth order method [9] is 

best. 

For now therefore in this feasibility study, a zeroth order 

method like the genetic algorithm or simulated annealing has 

been selected to be the best choice.  These involve two 

zeroth order methods where no derivative calculations are 

required. They avoid the difficult computation of objective 

function gradients and the need for special mesh generators 

[9].The simple test problem of Fig. 2 was selected. Fig. 2a 

shows the alternating poles pushing flux up and down in 

adjacent sets and Fig. 2b the minimal boundary value for the 

magnetic vector potential A with governing equation: 

																																								− 1	 ∇�� = �																																									(1) 
where 	 is the magnetic permeability and J is the forcing 

current density in the coils [2]. 

The object is to optimize the shape of the pole-face with 

GA. Thus as shown in Fig. 3, where the pole face is defined 

by 5 heights ℎ�, ℎ�, ⋯ , ℎ�. These five heights hi of Fig. 3 had 

to be optimized to get the pole shape giving us a vertical flux 

density 1 T along a line above the pole face. To define this 

formally the m measuring points were defined along the line 

show in Fig. 3. We allowed m to be changeable but used 3 

which worked well. This performance requirement of 1 T 

was imposed through the least-square objective function   

																							� = � ��������� !," − 1.0#��
"$� 																								(2) 

where �!  is the vertical flux density. Thus as �������� !," →1, F would tend to zero. The heights h, clearly would 

determine the value of F making 																				� = �(ℎ�, ℎ�, ⋯ , ℎ�)																																														(3) 
Thus an optimization method [10-12] needs to be pressed 

into service to determine these values of ℎ�, ℎ�, ⋯ , ℎ� that 

would make F zero. 

 

GPU PROCESSING – RESULTS 
 From the time Marrocco and Pironneau [10], and 

Gitosusastro, Coulomb and Sobonnadiere [11] applied 

gradients based finite elements to optimize magnetic 

circuits, papers have appeared using various optimization 

techniques [12]. Searching for the minimum requires several 

evaluations of the objective function F for each set ℎ�, ℎ�, ⋯ , ℎ� being tested. This means a new mesh and a 

large computational load. Shared memory parallel computers 

have been used [13, 14] but these are expensive, costly and 

the technology limits the number of processors that can be 



Proceedings of the 2013 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

 
Finite Element Optimization for Nondestructive Evaluation on a Graphics Processing Unit For Ground Vehicle … Karthik, et al. 

UNCLASSIFIED: Distribution A:  Approved for Public Release  

 

Page 4 of 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Conjugate Gradients Algorithm: Matrix Size 

Vs CPU time/GPU time 

 

 

used, usually to 16. However, since recently parallelization 

has been possible on a commonly available PC itself with 4 

cores, where the code may simultaneously run on the 

multiple cores or the graphics processing unit (or GPU – to 

be more specific on an NVIDIA GPU with CUDA 

architecture [4]). There is however a severe memory limit – 

4 GB at present. This would limit large problems as well as 

optimization where several problems may be attempted at 

once. We tested how the 4 GB translates into matrix size and 

the results of this study are shown in Table 1. It is seen that 

the limit is a 10,000x10,000 matrix size when the most 

efficient (sparse) storage scheme is employed [2]. 

For our purposes, as the project progresses, we need to 

solve eddy current problems in three dimensions. That is, if 

we are dealing with the magnetic vector potential as the state 

variable, it would have three components with each 

component a complex number. The implications to matrix 

storage would be severely limiting. 

To overcome this we propose to use a method of the early 

1980s when, working with the then new IBM PC 286, we 

had a memory limit of 612 kB which could not hold even a 

trivial matrix in memory. What we used to do was employ 

the Jacobi methods of matrix solution element-by-element. 

For example in solving the finite element matrix equation 																															()*+�, = +-,																																															(4)	
just to explain the issues, the Gauss-Seidel iterative method 

[2], commonly used by power engineers, is an improvement 

on the older Gauss iterations where in each iteration m+1 we 

use the latest available values of the unknowns A, using 

equation i of (4) to compute �" treating only �" as the 

unknown and all the other variables as known and given by 

their latest values: 

														�"�/� = 1)"" 0�)"1�1�/� 2 � )"1�1�
3

1$"/�

"4�

1$�
5														(5) 

with obvious modifications for i =1 and i = n. Here at 

iteration m+1, computing �" in the order i=1 to n, A is at 

values of iteration m+1 up to the (i-1)th component of {A} 

and at the values of the previous iteration m for values after 

i. The Gauss iterations using the old iteration’s value for 

computing all �" in iteration m+1 according to  											�"�/� �
788 9-" − ∑ )"1�1� − ∑ )"1�1�31$"/�"4�1$� ;								(6) 

is inefficient in the context of sequential computations. But 

in this case of parallelization, if we can resort to this 

conventionally inefficient method, we may not form the 

matrix [P]. If [D] is the matrix [P] with all off diagonal 

elements eliminated, then Gauss’s iterative method in this 

modified form gives,  																				(=*+�,�/� = +-, − () − =*+�,�																		(7)  

Thus without forming [P], the operation of the right hand 

side of (7) can be effected by taking each finite element in 

turn, computing the local 3x3 Dirichlet matrix ()*? and 

using that  because 																									()* = ∑ ()*?				@A���3�B                                (8) 

So as each ()*? is formed, the three values of +�,� may be 

taken and subtracted as in the right hand side of (7). We 

tested this and the results are shown in Fig. 4. We were able 

to go up to matrix sizes 100,000x100,000 and well beyond. 

We then applied the same idea to the more efficient 

incomplete Cholesky preconditioned conjugate gradients 

(ICCG) method [2] as laid out by Mahinthakumar and Hoole  

[15] for shared memory systems. In the GA kernel, there 

was no internal parallelization. In this work, the Incomplete 

Cholesky Conjugate Gradients matrix solver was 

parallelized on the GPU and we observed a speed-up of 

146.351 for the matrix  size 10,000x10,000 (Fig. 5). 

 

Table 2: Performance of GA 

Table 3: Performance of SA 
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Figure 6: An Optimized Pole-face (5 parameters, 98 

nodes, and 70 unknowns 

Table 4: Gain in using GPU 

Population 

Size  

No of 

Iterations 

Time(s) Ratio 

GPU/CPU 

Times CPU GPU 

50 20 4824.94 432.38 11.16 

100 20 9619.24 475.09 20.25 

200 20 18322.20 667.85 27.43 

400 20 37444.20 1480.32 25.29 

512 20 49200.00 1756.43 28.01 

 

 
Figure 7: Crack Recreated from Exterior Fields using 10 

parameters 

APPLICATION TO POLE FACE SHAPING 
The pole face then shaped by optimization is shown in Fig. 

6.   GA was found to be effective converging faster than 

simulated annealing. The “fitness of the solution” for the 

GA, 1/(1+F), would approach 1 from below. The population 

size is the number of GA kernels launched as GPU threads. 

The optimal shape is in Fig. 5 and details in Tables 2 and 3 

where the performances of the genetic algorithm and 

simulated annealing are respectively summarized. After 50 

threads, the fitness was excellent. To compare the timings, 

for the genetic algorithm, a comparable object function is 

computed in Table 2 from the fitness F: (1 − �) �⁄ . It is 

seen that the genetic algorithm reaches a comparable object 

function value much faster than simulated annealing. 

Seeking large population sizes and matrix size, we 

attempted to estimate the gain by using the GPU. The results 

are shown in Table 4. We observed these results for a simple 

electro-thermal coupled problem with the matrix size 

204×204. 

 

TEST PROBLEM OF INVERSION 
To test our methodology and establish feasibility for these 

methods mooted, we need a special mesh generator 

modeling the crack defined by parametric location and 

shape. We created such a mesh generator just for the crack 

assessment problem, created a crack and computed the fields 

along measuring points outside the steel plate. 

Thereafter, taking the results as the “measured field,” we 

had to discover this crack as described by parameters {p}.  

The results are shown in Fig. 7. We obtained a 95% match. 

In realistic cracks however, no model would be perfectly 

valid so the objective function will not go down to zero. 

However, the method is seen to be feasible. 

 
CONLUSIONS 

We conclude that using genetic algorithm optimization 

doing computations on a GPU for the reconstruction of hull 

defects has enormous benefits – speed through parallelism 

and convenience in avoiding computationally expensive 

gradients which are almost impossible to program as general 

purpose software. 

Ultimately this problem would need to be done in 3-D 

where the computational load would be higher.  Special 

mesh generators that maintain nodal connections would add 

to the burden. Additionally, many parameters must be 

allowed to get accurate crack shapes. 

 

DISCLAIMER 
Reference herein to any specific commercial company, 

product, process, or service by trade name, trademark, 

manufacturer, or otherwise does not necessarily constitute or 

imply its endorsement, recommendation, or favoring by the 

United States Government or the Dept. of the Army (DoA). 

The opinions of the authors expressed herein do not 

necessarily state or reflect those of the United States 

Government or the DoD, and shall not be used for 

advertising or product endorsement purposes. 
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